

New Zealand Institute for Crop & Food Research Ltd.

Modified Atmosphere Packaging of Seafood

Graham C Fletcher

Background
Our research on hoki
Critical parameters for success
Our research on salmon
Future research plans
Conclusions

New Zealand Institute for Crop & Food Research Ltd.

Background

What is MAP? Seafood applications. How does it work? Safety considerations.

Modified/Controlled Atmosphere Packaging (MAP/CAP)

- Place product in a gas impermeable container (e.g. a flexible film or a shipping container)
- Remove air surrounding the product.
- Replace with a chosen gas mixture:
 - usually carbon dioxide and nitrogen
 - sometimes oxygen, argon, carbon monoxide etc.
- Seal the product and gas mix in the container.
 - MAP: allow changes to occur after packing
 - CAP: actively maintain the gas mix as originally packed

Modified Atmosphere Packaging

History

Commonly used for seafood in Northern Europe, particularly France and the UK

- In the 4 years to 1990 sales of MAP packages in Europe increased 5-fold to 250 million
- 1995, 400 million packages sold in the UK
- May have declined since then
- Starting to appear on Australian supermarket shelves Simplot
- Not applied commercially for seafood in NZ
- Virtually unused in USA
 - Restricted due to safety concerns
 - "secondary measures in addition to refrigeration must be employed to increase assurance of product safety" – NACMCF, 1992

Why use MAP?

- Changing the gas environment slows bacterial growth and enhances shelf-life
- Retail packs:
 - Attractive, product visible
 - Robust, leak proof, odourless, easy to label, convenient
 - Producer has control of product form and marketing

- Draw backs
 - Bulky, difficult to chill, increased cost
 - Safety concerns anaerobic environment may allow growth of pathogens before spoilage

Shelf lives claimed

	Temp		MAP	Extension
Species	(°C)	Gas	shelflife	(cf air)
White fish	5	$CO_2/N_2/O_2$	9	1.5x
Whiting	26	CO ₂	2	1 x
Whiting	4	CO ₂	15	2 x
Rockfish	1.7	CO ₂ /Air	13	2.2x
Rock cod	4	CO ₂ /Air	21	3x
Mackerel	0	CO_2/N_2	6.5	1.9x
Trout	1.7	CO ₂ /Air	20	1.7x
Scallops	4	CO ₂	22	1.8x
Shrimp	4	CO ₂	15	3x
Scampi	0	$CO_2/N_2/O_2$	4.5	1.5x
Crab	1.7	CO ₂ /Air	25	1.8x
Crayfish	4	CO ₂ /Air	21	3x

From Farber et al. (1991) and Church et al. (1998)

Pack formats

- Retail pack
- Master pack
 - Permiable overwrap packs placed in larger imperiable master pouches and flushed with CO₂
 - Removed from master pack before retail
- Bulk transport
 - Specially constructed refrigerated container loaded with pre-cooled product and gas mix injected
 - E.g. 1979 2.3M lb salmon in USA

Effect of gases on seafood

Carbon dioxide (CO₂) inhibits growth of many spoilage organisms

- Excluding oxygen (O₂)
 - inhibits oxidation
 - Inhibits growth of aerobic bacteria
 - May maintain colour
- Nitrogen (N₂) acts as an inert filler
- Argon (Ar) is heavier than N₂ and has been claimed to be better at displacing oxygen
- Carbon monoxide (CO) maintains red colours
 - accepted in USA but not Europe or FZANZ

CROP FCOD R E S E A R C H Mana Kai Rangahau

Safety: Clostridium botulinum type E

- Produces a potent neurotoxin
- Toxin destroyed with cooking (5 min, 60°C)
- Organism occurs naturally in marine environments
- Toxic organism not known in Australasia
- Will not grow below 2.9°C
- US requires controls additional to refrigeration (e.g. use-by-date of <10 days from packing or indicators)
- UK code of practice allows unlimited distribution life where monitored temperatures are below 3°C but no more than 10 days of refrigerated shelf life once out of monitored control

Safety – *Listeria monocytogenes*

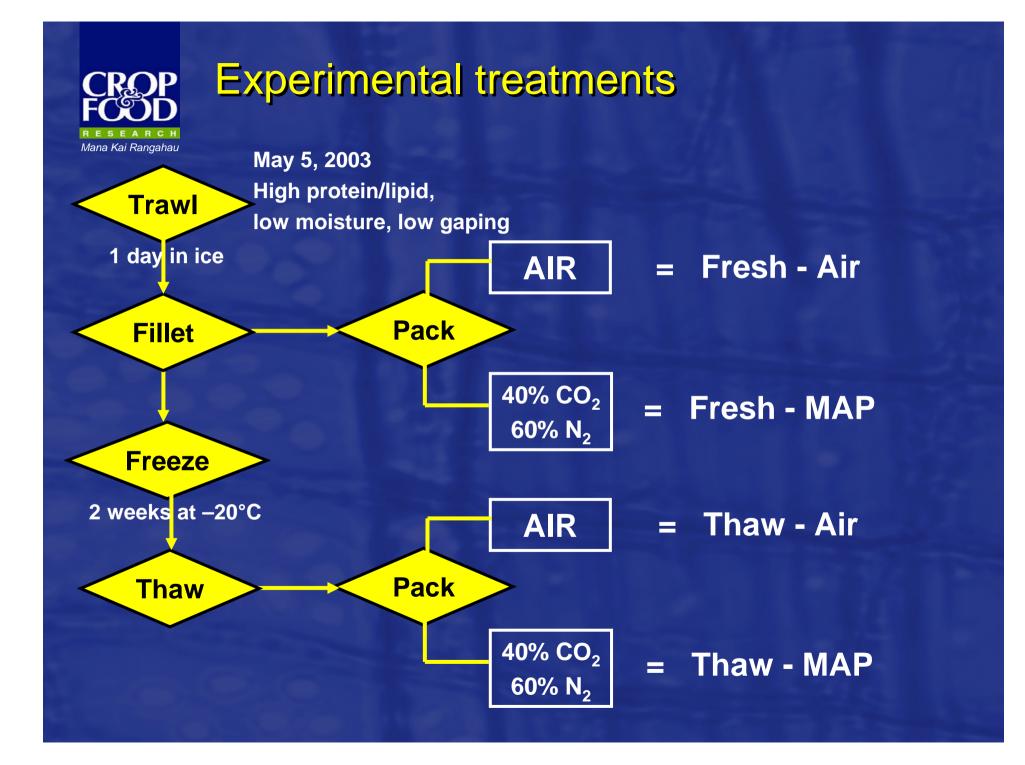
Listeria monocytogenes

- Not naturally a part of wild caught seafood microflora
- Limited sensitivity to CO₂ or absence of O₂
 - Growth slowed but not eliminated
- Will grow down to −1.5°C
- Eliminated by adequate cooking
- Otherwise control must be at source or by shelf-life limitations

New Zealand Institute for Crop & Food Research Ltd.

Modified Atmosphere Packaging Research on Hoki

Applicability to our largest fish resource



Aims

Determine whether and to what extend MAP can increase the shelf life of hoki fillets

Compare the quality and shelf-life of MAP hoki prepared from fresh and thawed fillets

Consider the effect of seasonal variation on the shelf life of MAP hoki

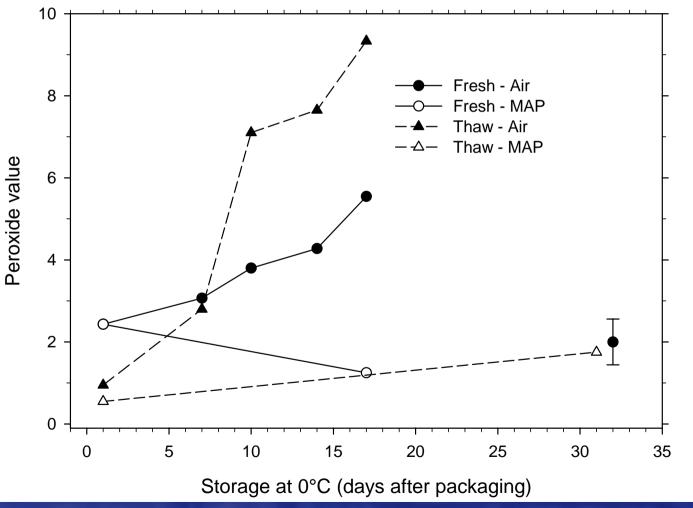
RESEARCH Mana Kai Rangahau

Sampling and analyses

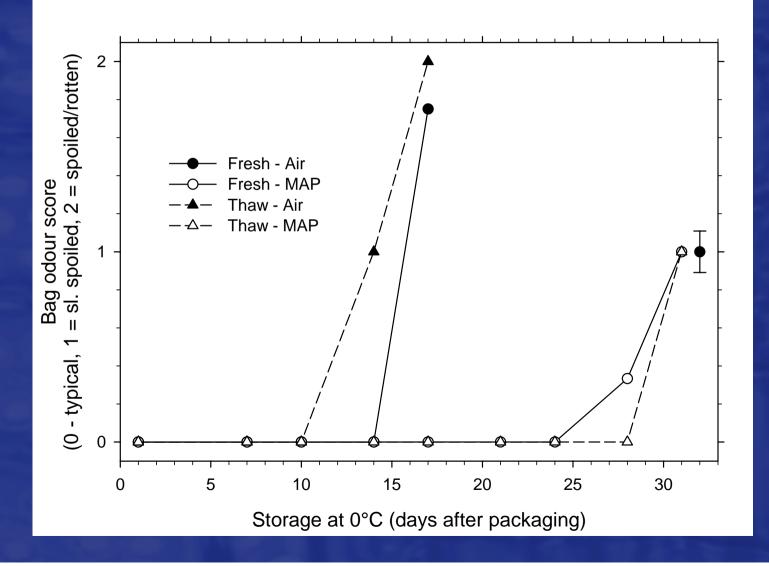
- Packs were stored at 0 ± 0.05°C
- Air packs were sampled after 1, 7, 10, 14, 17 days at 0°C
- MAP packs were sampled after 1, 7, 10, 14, 17, 21, 24, 28 and 31 days at 0°C
- On each occasion 4 packs were sampled for physical, chemical and microbiological evaluation and 8 packs for cooked sensory evaluation
- Analyses included O₂, CO₂, APC, sulphide producing bacteria, CO₂-resistant bacteria, microflora composition, raw sensory, gaping score, colour, Torry freshness meter score, pH, E_H, drip loss, instrumental textural analyses, ATP catabolites, TVBN, TBARS, and peroxide values.
- A trained panel (10) each tasted cooked fish from each treatment twice on each occasion, scoring 29 attributes on 6 point intensity scales.


New Zealand Institute for Crop & Food Research Ltd.

Results


Bacterial counts – APC (20°C)

Mana Kai Rangahau



Oxidation – peroxide value

Raw odour

Cooked sensory evaluation D Mana Kai Rangahau 1.7 Fresh - Air Cooked Sensory Score (log₁₀ Quality Index) Fresh - MAP Thaw - Air Thaw - MAP Δ Fresh - Reference Thaw - Reference ****.... Λ 1.6 Δ 1.5 1.4 10 15 20 5 25 30 0 Storage at 0°C (days after packaging)

Critical success parameters

- Acceptability of MAP in selected market
- Temperature (-1.5°C to +3°C)
 - Fish will spoil twice as fast at 4° than at 0°C
 - Dropping temperature from 2° to 0°C will give a 1.4x shelf life extension
- Raw material quality must be high
 - MAP will not prevent spoilage of marginal quality product (APC <10⁴/g)
- Choice of film must have high O₂ barrier, other characteristics?
- Access of gas to the product
- Choice of gas mix optimised to suit the product
- Fish:Gas ratio

Mana Kai Rangahau

New Zealand Institute for Crop & Food Research Ltd.

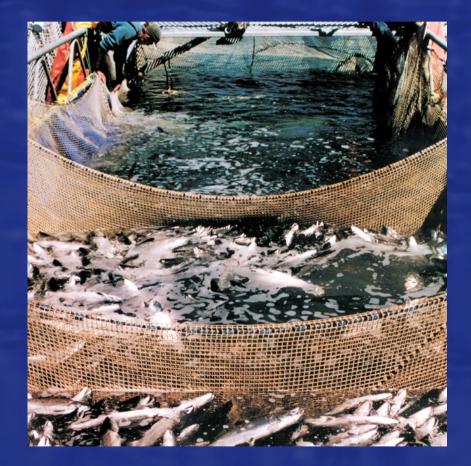
Modified Atmosphere Packaging Research on Salmon

Optimising gas mixes and fish to gas ratios

Gas composition – research

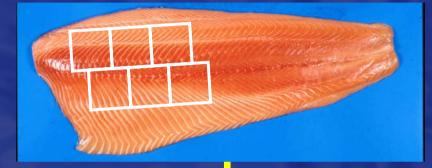
Most published research to date empirical
Results cannot be applied beyond experimental conditions
Often focused on one aspect of shelf-life

Microbial growth
Sensory

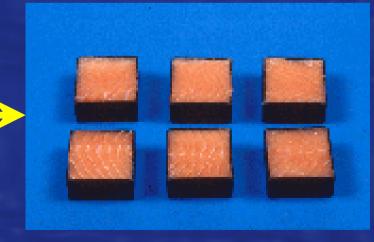

P MAP Salmon Results

- CO₂ is the main anti-microbial agent in MAP
- A key parameter is the amount of CO₂ available to act on the fish flesh.
- Increasing CO₂:
 - Will reduce bacterial counts
 - May induce unacceptable sensory characteristics
- We determined the effect of increasing amounts of CO₂ on salmon

R E S E A R C H Mana Kai Rangahau


MAP - Seafood Our Approach

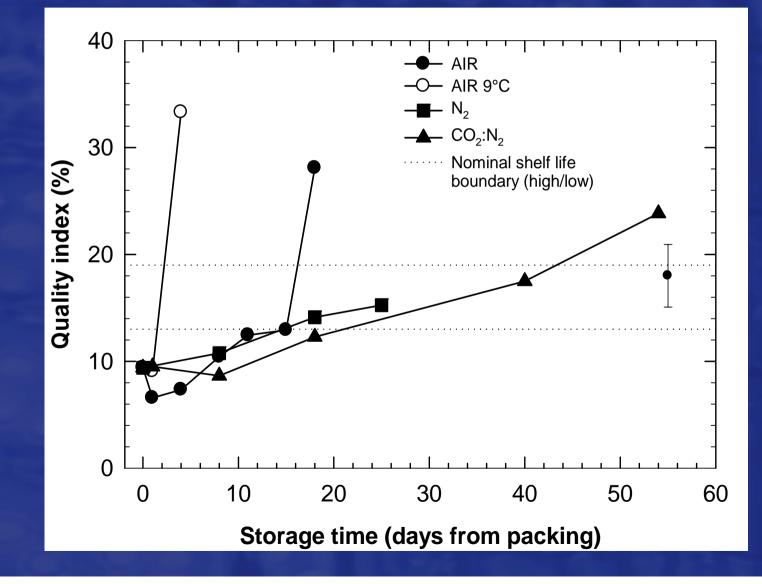
- Develop a model that can be used to answer 'What if?' questions
- Salmon as an initial model species because we had control of the starting material



MAP Seafood Our Method

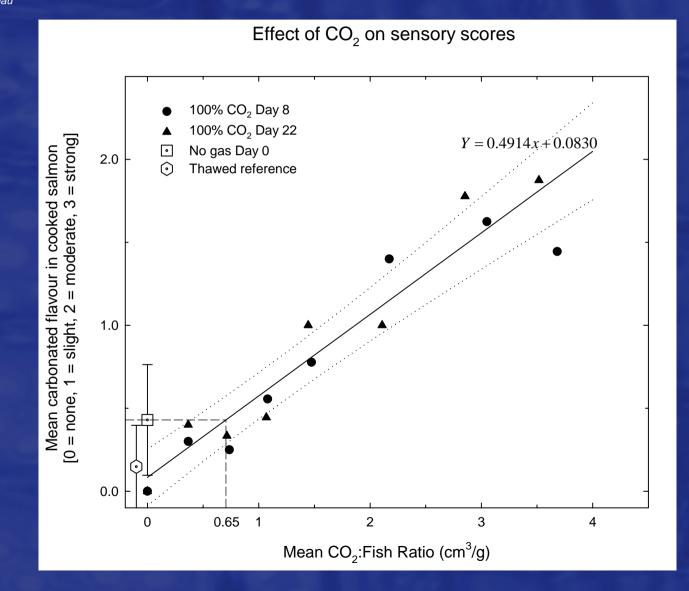
 Use fish pieces from chosen positions of fixed size and exposed surface area

MAP Seafood Our method


Deliver known volumes of gas (by GC syringe) Store in melting ice $(0 \pm 0.05^{\circ}C)$

- Model effects of temperature, gas mix, fish volume, gas volume, fish species, fish condition on shelf-life
- Obtain data on:
 - Microbial growth rates
 - Principal spoilage organisms
 - Sensory evaluation
 - Physical, chemical, and biochemical data (Drip loss, colour changes, ATP breakdown products, basic amines, pH, Eh, TBA, peroxide and anisidine values)
 - Determine chemical cues (GCO-GCMS)

CROP
FOOD
Mana Kai RangahauMAP Salmon Results
Effect on sensory scores


Carbonated flavour vs CO₂

Mana Kai Rangahau

2.0 Strong) II = Slight, 2 = Moderate, 3 Day 8 1.5 Day 22 Carbonated Flavour 1.0 0.5 -(0=None, 0.0 20 40 60 80 100 0 mL CO_2 added to 27.4 cm³ salmon flesh

Effect of CO₂ on sensory scores

Carbonated flavour vs CO₂

CROP FOOD MAP Salmon Results

The amount of dissolved CO₂ is determined by:

Gas mix

Mana Kai Rangahau

- Fish:gas ratio
- Fish composition (e.g. % lipid)
- Gas laws define a relationship between fish:gas ratio, gas mix and solubility of gas in product
- We can therefore design a gas pack with a particular fish:gas ratio so that the right amount of CO₂ is absorbed into the product

Future Research Plans

Species by species evaluation.

Mana Kai Rangahau

- Select species-specific quality evaluation markers.
- Use the best current practice to supply the species as a fresh seafood.
- Optimise packaging regimes for the species by defining the fish:gas ratio and gas mixture producing maximum bacterial inhibition with minimum negative impact on the sensory quality.
- Select other optimum parameters (e.g. temperature constraints) for successful transportation and marketing of the fish giving a high quality shelf life of at least 21 days.

Design an integrated fresh fish regime and carry out industry-based validations.

Conclusions

- MAP does have considerable potential for extended shelf-life seafood products.
- Temperature control and high quality raw material will always be critical.
- Each product must be carefully evaluated for benefits of MAP.
- Factors such as the effect of MAP on drip loss and product appearance will vary with different products
- Gas composition and fish:gas ratio need to be defined for each product

New Zealand Institute for Crop & Food Research Ltd.

Questions?